Safety and Maintenance

High Voltage!

- Electricity does not warn you before shocking you
- High voltage shocks can kill you
- Turn everything off before you touch the system

Personal Protective Equipment

Use Personal Protective
Equipment such as hardhats,
safety glasses, safety shoes,
or gloves when handling solar
equipment

Thermal Runaway

- Cells can rapidly heat and release electrolytes, flames, and dangerous fumes in inappropriate conditions
- Solar modules should not exceed 25 C
- Heat adds resistance to the current, so for every degree above
 25 C the performance will drop by 0.5%
- Read the manual for appropriate operating temperatures

Batteries

- If there is liquid near batteries, assume it is battery acid
 - o Do not touch the liquid! It will burn skin and clothes
 - Dab a cloth in a solution of baking soda mixed with water to clean off the top of the battery
- Batteries are capable of overheating but come with protective equipment that protects it from extreme voltage, current, or incompatible temperatures

Crimped Cables

- Poorly crimped cables can potentially spark or short circuit acting as a possible fire starter
- If cables must be cut, use a high-quality crimper tool

Good

Weather

- If high wind speeds occur, make sure the foundation is secure!
- Earthquakes can cause electrical wiring to tear away from the system which can lead to a short circuit and could turn into a fire
 - Run electrical wiring through a flexible conduit between large structures that can easily move
- If there are lightning storms a few times a year, use lightning protection devices
 - Devices encourage the strike to travel through a predetermined path

Animals

- Be careful if an elephant walks by the solar array, it might think the solar array is a lake and will attempt to sit on it
- Bird droppings can shade solar modules
- Rats or other rodents can chew wires
 - Possible falling leaves on those wires can cause fires
 - Cage off the edge of rooftop PV arrays if there are concerns about rodents

Please Remember...

- Have a partner check your work and watch for risk
- Read the manual
- Safety is the most important thing!

Operation and Maintenance of the System

- Important to do once a year
- Identifies problems that can come from age or the environment to help insure that the system is functioning

Module Maintenance

- Dust on the modules reduces the production of the system
 - Regularly clean off modules if in an area without regular rainfall
- Do not pour cold water on hot modules
 - o Temperature difference could shock and crack the glass
- For rooftop arrays, check drainage and watertight seals

Battery Examination

Inspect the area for liquid

- Check to see if the sides of the battery are bloated
 - Could be a sign of undercharging, over-discharging and/or sulfate build-up
- Test the voltage between the batteries and between battery cells to ensure minimal voltage differences

Inverter and Charge Controller Examination

- Clean air filters of the cabinet if accessible
- Both electronics tend to overheat
 - Use fans to prevent overheating, make sure to examine the fans yearly
- Check fuses, circuit breakers, and lightning arrestors
- Test for continuity on the system ground and equipment ground
- Most inverters and charge controllers last for 10 years

Inverter and Charge Controller Examination

DC Over Voltage

 Measure the voltage of the PV combiner box to check if voltage exceeds the input of charge controller or inverter

AC Under/Over Voltage

- Disconnect all AC sources and test the AC voltage
- If it is within range, manually restart the inverter
- If out of range, call the inverter manufacturer

Tools Kill A Watt Meter

- Measures the power of individual equipment to help determine your consumption per device and possible voltage drops
- Calculates kWh, W, V, A, Hz,VA,
 PF
- Only plugs into the AC outlet after the inverter

Tools Multimeters

 Measures voltage, current, and resistance

 Checks for continuity of the circuit

Tools Clamp Meter

- Equipped with a clamp to measure current indirectly
- Clamps allow measurements to be taken without interrupting the circuit

Tools Angle Gauge

Determines the actual tilt of the solar array or roof pitch

Tools Solar Pathfinder (Hardware or App)

 Measures the path of the sun and the shade in a particular location

 Helps to determine what the PV production will be

Tools Hydrometer

 Measures the specific gravity in flooded lead-acid batteries

 Gravity helps to determine the voltage of each cell

 Large voltage differences indicate a malfunctioning or dead battery

Tools Cable Crimper

 Used to join two metallic ends such as a connector to the end of a cable, or a cable to another cable