Crash Course in Power

Terminology

- Electricity is a flow of electrons through a circuit
- Electricity has several characteristics that can be
 - measured
- Voltage (volts), amperage (amps) and watts (watts)

Electricity moves like water

- Electrons are the H2O molecules
- Electrons (H2O molecules) flow through copper cable (pipe) to fill empty buckets (batteries)
- Electrons follow the path of least resistance - like water following gravity.

Voltage

The voltage (V) measures the pressure with which electrons move through a circuit.

If a circuit has no voltage, then it has no flow of electricity.

Picturing Voltage

- Imagine the flow of water from a full bucket to an empty one
- The water will rush from the full bucket to the empty bucket due to pressure
- The more pressure (voltage),
 the more water flow

Amperage (Current)

The amperage (A) measures the rhythm of electrons with which electrons move in a circuit.

Fun Fact: One Ampere is 6 billion billion electrons per second!

Watts

Watts (W) measure system power.

Watt-Hour

Watt-Hours (Wh) measure average power over time

To calculate the watt hours, two things must be known:

- The power demand in watts of the device at any given time.
- The total time the device uses power.

Review

- Volts are pressure
- Amps are current
- Watts are power
- Watt-Hours are power over time

Equations:

Watts =
$$Amps \times Volts$$

$$\circ$$
 W = A x V

Watt-Hours = Watts x Hours

- \circ Wh = W x h
- o 1000 Wh = 1 kilowatt-hour (kWh)

$$Amp-Hours = Amps x Hours$$

$$\circ$$
 Ah = Axh

Terminology

There are two different types of currents:

Alternating current (AC)

Direct current (DC)

Current Basics

- Current can flow in two ways
 - Direct Current
 - Alternating current
- DC flows in one direction
 - Batteries and solar panels naturally flow in DC
- AC flows rapidly back and forth

Device coupling

When choosing the devices to be used with a solar system there are two rules:

- The voltage of the appliance must match the voltage supplied to it from the solar system.
- The electrical appliance must operate with the type of current supplied to it, AC or DC.

Electrical circuits

In an electrical circuit there is uninterrupted flow of electrons from a voltage source, such as a battery or solar system, through a conductor, and back to the source.

Basic electrical circuit

Circuit connected in series

The volts are added

and the amperage is

Circuit connected in parallel

Volts remain

Circuit connected in parallel

Volts remain

Circuit connected in series

The volts are added

and the amperage is